
495

Atherogenic Lipoprotein Phenotype
A Proposed Genetic Marker for Coronary Heart Disease Risk

Melissa A. Austin, PhD, Mary-Claire King, PhD,

Karen M. Vranizan, MA, and Ronald M. Krauss, MD

In a community-based study of 301 subjects from 61 nuclear families, two distinct phenotypes
(denoted A and B) were identified by nondenaturing gradient gel electrophoretic analysis of low
density lipoprotein (LDL) subclasses. Phenotype A was characterized by predominance of large,
buoyant LDL particles, and phenotype B consisted of a major peak of small, dense LDL
particles. Previous analysis of the family data by complex segregation analysis demonstrated
that these phenotypes appear to be inherited as a single-gene trait. In the present study, the
phenotypes were found to be closely associated with variations in plasma levels of other lipid,
lipoprotein, and apolipoprotein measurements. Specifically, phenotype B was associated with
increases in plasma levels of triglyceride and apolipoprotein B, with mass of very low and
intermediate density lipoproteins, and with decreases in high density lipoprotein (HDL)
cholesterol, HDL2 mass, and plasma levels of apolipoprotein A-I. Thus, the proposed genetic
locus responsible for LDL subclass phenotypes also results in an atherogenic lipoprotein
phenotype. (Circulation 1990;82:495-506)

E pidemiological studies have established several
lipoprotein-related risk factors for coronary
heart disease (CHD). Elevated plasma levels

of low density lipoprotein (LDL) cholesterol are
believed to increase risk,1-3 whereas high density lipo-
protein (HDL) cholesterol levels are inversely related
to risk.4-6 Plasma concentrations of apolipoprotein
(apo) B and apo A-I, the major protein components of
LDL and HDL, respectively, have also been associated
with atherosclerosis.78 The relation of plasma triglyc-
eride levels and triglyceride-rich lipoproteins such as

very low density lipoproteins (VLDL) to heart disease
risk is less well understood.910 In addition, there is
evidence that other classes of lipoproteins, such as

intermediate density lipoproteins (IDL) and Lp(a), are
involved in the development of atherosclerosis.11"12

Genetic influences on lipoproteins have also been
demonstrated. Based on population studies, lipid levels
have been shown to cluster in families13-'5; studies of
twins indicate significant genetic influences as well.'6"17
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Familial forms of hypercholesterolemia may result
from deficient or defective LDL receptors18 or from
mutations in apo B leading to defective receptor
binding.19 More common polymorphisms of apo A-I,
apo B, and apo E have been associated with variations
in lipid and lipoprotein levels.20-22 Recently, Lp(a)
levels and isoforms have also been shown to be under
genetic control.23

In our laboratory, we have identified distinct lipopro-
tein phenotypes based on analysis of LDL subclasses.24
Specifically, two phenotypes, A and B, are character-
ized by a predominance of large, buoyant LDL particles
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and small, dense LDL particles, respectively. We have
recently demonstrated that phenotype B is associated
with increased risk of myocardial infarction,24 consis-
tent with two previous studies.2526 Based on complex
segregation analysis of 61 nuclear families, we have also
shown that phenotype B appears to be inherited as a
single-gene trait with a dominant mode of inheri-
tance.27 In the present report, we show that in these
families, LDL subclass phenotypes are closely associ-
ated with other lipoprotein and apolipoprotein profiles
that are known to influence risk of atherosclerosis.
Thus, we have designated the proposed genetic locus
responsible for LDL subclass phenotypes as an athero-
genic lipoprotein (ALP) phenotype locus.

Methods
Subjects
The recruitment of families took place primarily

among the Mormon community in the San Francisco
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Bay area between 1984 and 1987, although nonlocal
relatives were also screened.27 Families were not
selected for lipid disorders or family history of car-
diovascular disease, but sequential sampling of infor-
mative kindreds was used.28 With the exception of
one kindred of Portuguese descent (n=28) and one
small Asian nuclear family (n=4), all families were
non-Hispanic Caucasian. Three hundred one family
members of 29 kindreds participated in the study;
included were 61 nuclear families. Of the 301 partic-
ipants, 100 had married into the kindreds and were
not related to each other. Subjects ranged in age
from 6 to 95 years, with approximately equal propor-
tions of men and women (49% men and 51% wom-
en). Only 22 eligible subjects declined participation,
a response rate of 93%. Each subject gave written
informed consent.

All participants provided blood samples after an
overnight fast and completed a medical history ques-
tionnaire. For local family members, heights and
weights were measured in the clinic, whereas among
nonlocal subjects, reported heights and weights were
used. Mormon families were selected for this study
because they usually do not smoke tobacco and do
not drink beverages containing alcohol or caffeine.
Abstinence from these factors among the majority of
family members was confirmed by questionnaire and
reduced possible confounding in the genetic analysis
because these factors have been associated with
variations in lipid and lipoprotein levels.29-33 In
addition, because Mormon families are generally
large and genealogical records are carefully main-
tained, they are especially informative for genetic
analysis. The segregation results in the non-
Caucasian kindreds were not different from the
remaining kindreds; therefore, all families were ana-
lyzed as a single group.

Lipid, Apolipoprotein, and LDL Subclass Analyses
Plasma lipid and apolipoprotein determinations

and LDL subclass analyses were performed on fresh
plasma samples after immediate centrifugation of
whole blood. Total cholesterol and triglyceride levels
were measured by enzymatic techniques with the
Gilford 3500 autoanalyzer. HDL cholesterol was mea-
sured after precipitation with heparin-MnCI2,3435 and
LDL cholesterol was calculated from the formula of
Friedewald et al.36 Plasma apo A-I levels and apo B
levels were measured by maximal radial immunodif-
fusion using reagents from Tago, Inc.37,38 Lipoprotein
mass measurements were determined as a function of
Svedberg flotation rate using analytic ultracentrifuga-
tion in an unselected subset of 211 subjects.39 The
remaining 90 subjects did not have these measure-
ments made due to funding and staff limitations.
Measurements of VLDL mass of flotation rate (S')
20-400, IDL of S' 12-20, large LDL of SO 7-12, small
LDL of SO 0-7, HDL2 of flotation rate (F'120) 3.5-9,
and HDL3 of Fy120 0-3.5 are reported here.
LDL subclass patterns were determined based on

nondenaturing polyacrylamide gradient gel electro-
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FIGURE 1. Atherogenic lipoprotein phenotypes for four sibs:
35-year-old man (a), 44-year-old woman (b), 38-year-old
man (c), and 32-year-old man (d). Examples of atherogenic
lipoprotein phenotypeA are seen in panels a and b with peak
particle diameters of 268 and 264 A, respectively. Scans in
panels c and d represent atherogenic lipoprotein phenotype B
with peak particle diameters of 252 and 247X, respectively.

phoresis of whole plasma and of the density<1.063
g/ml plasma fraction, using Pharmacia PPA 2-16%
gradient gels as described previously.40,41 Stained gels
were scanned with a Transidyne RFT Scanning Den-
sitometer, and particle diameters were calculated
from calibration curves using standards of known
size.40 The coefficient of variation of the calculated
particle diameters has been estimated to be 3% by
this procedure.40 Based on the resulting scans, two
distinct LDL subclass patterns were identified and
are denoted here as ALP phenotype A and pheno-
type B.24 Examples of these phenotypes among four
sibs from a large kindred are shown in Figure 1.
Phenotype A is characterized by a major peak of
large, buoyant LDL particles and a minor peak of
smaller, denser LDL subspecies, as shown in Figures
la and lb (peak particle diameters of 268 and 264 A,
respectively). The peak particle diameter for ALP
phenotype A scans is generally more than 255 A. In
contrast, the major peak for ALP phenotype B is
usually 255 A or less, as shown in Figures lc and ld
(peak particle diameters of 252 and 247 A, respec-
tively). The major peak in this phenotype consists of
small, dense LDL particles, with a skewing of the
curve toward the larger particle diameters.
Among the 301 family members, 87% could be

classified into one of these two phenotypes. The
remaining 13% of subjects had patterns of an inter-
mediate phenotype. That is, either the peak particle
diameter value was close to the 255 A cutoff point
and no skewing of curve was seen, or two distinct
major peaks were seen. For the present analysis,
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TABLE 1. Observed and Expected Segregation Ratios of Atherogenic Lipoprotein Phenotypes in 49 Nuclear Families

ALP phenotype A
(n) (%)

14 Observed
Expected

27 Observed
Expected

8 Observed
Expected

41 (100)
41.0
66 (70)
64.3
13 (65)
9.7

ALP phenotype B Total
(n) (%) (n)
0(0) 41
0.0

28 (30)
29.7
7 (35)

10.3

94

20

ALP, atherogenic lipoprotein phenotype.
Based on single-locus dominant model, with allele frequency of 0.25 for phenotype B and reduced penetrance among

males less than 20 years old and premenopausal females, as determined by complex segregation analysis.27 Only
families with both parents sampled are included in table.

these subjects have been classified as ALP phenotype
B.27 By this definition, 31% of the study subjects had
ALP phenotype B, although the prevalence varied by
age, gender, and menopausal status in women. Spe-
cifically, among the males, phenotype B had a fre-
quency of 17% in those less than 20 years old and
44% in those 20 years old or older; among females,
phenotype B had a frequency of 13% before meno-
pause and 49% after menopause.27 Mean peak par-
ticle diameters were 266.2±5.8 (±SD) and 252.7±7.1
A for subjects with phenotypes A and B, respectively.

Segregation Analysis
As we have recently reported, the inheritance of

ALP phenotypes was investigated using complex
segregation analysis based on the mixed model with
pointers.27,42-45 The model that best explained the
data was a single-locus model with a dominant mode
of inheritance. Based on this model, the frequency of
the allele leading to phenotype B was 0.25.27 Full
penetrance (the probability of expressing phenotype
B given genotype AB or BB) was observed among
men 20 years old or older and among postmeno-
pausal women.27 Penetrance was 0.4 for younger
males and 0.3 for premenopausal females. Thus,
complex segregation analysis suggested that ALP
phenotype B is a common genetic trait with a domi-
nant mode of inheritance and is fully expressed in
adult men and postmenopausal women.

Statistical Procedures
Individual lipid, apolipoprotein levels, and lipopro-

tein mass measurements were adjusted by analysis of
covariance4647 for age, gender, and Quetelet index
[measured as (wt [kg])/(ht [m])2]. Main effects for
these covariates were included in each model. For
HDL cholesterol, apo A-I, HDL2 mass, and HDL3
mass, a significant gender by age interaction term was
included in the model. For apo B, a significant Quete-
let index by gender interaction term was included.
Triglyceride, VLDL cholesterol, and VLDL mass

were transformed logarithmically due to skewing of
the distributions. Means and SDs of these variables
are reported in antilog units, however, for ease of
interpretation. All mean values were adjusted to

expected values for 50-year-old men. Significance
levels for comparison of subjects with ALP pheno-
types A and B were also based on analysis of covari-
ance models. Skewness of frequency histogram distri-
butions was calculated as the third central moment.48
Thus, skewness values of more than 0 indicate a long
tail to the right, and values less than 0 indicate a long
tail to the left.

Interrelations among lipid, lipoprotein, and apo-

lipoprotein variables were assessed by Pearson's
product moment correlations.47 To evaluate the si-
multaneous associations of lipid and apolipoprotein
levels with the ALP phenotypes, multivariate analy-
ses were performed with unconditional logistic re-

gression.49'50 That is, ALP phenotype was the depen-
dent variable and a series of lipid and apolipoprotein
variables were the independent variables in the mod-
els. A prior probability of 0.30, based on the overall
prevalence in the study sample, was used for pheno-
type B, and V2 goodness-of-fit statistics were deter-
mined for each model. All computations were per-
formed with the Statistical Analysis System.51'52

Results
Genetic Analysis
Based on the single-locus dominant model and

incorporating both the estimated allele frequency and
penetrance values,27 expected segregation ratios were
calculated. Table 1 compares these expected frequen-
cies with the observed values based on 49 nuclear
families in which both parents were sampled. Among
the 14 families in which both parents had phenotype
A, all of the 41 offspring had phenotype A, identical to
the expected frequency. Among the 27 AxB families,
28 of the 94 total offspring (30%) had phenotype B,
corresponding very closely to the expected frequency
of 29.7 based on the model. Of the 20 offspring from
BxB matings, seven had phenotype B, compared an

expected 10.3. Although this comparison is not as
close as the other mating types, the sample size in this
category of families was small, and sampling variation
was likely to be higher. A statistical comparison of the
observed and expected was not significant (x2= 1.021,
df=5, p=0.961). Thus, the results of the segregation

Matings
(n)

Parental
mating
type

AxA

AxB

BxB
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TABLE 2. Mean Values of Lipids for Study Subjects Compared
With Lipid Research Clinics Program Prevalence Study Results

Lipid Research
Present study subjects Clinics subjects

(n=301)* (n=340)t
Total cholesterol 183 ±39 213 ±35
Triglyceride 100±63 153±101
VLDL cholesterol 20±13 27±20
LDL cholesterol 119±35 142±31
HDL cholesterol 43±10 44±11

VLDL, very low density lipoprotein; LDL, low density lipopro-
tein; HDL, high density lipoprotein.
Values are given as mean±SD mg/dl.
*Mean values adjusted to 50-year-old men with analysis of

covariance and adjusting for age, gender, and Quetelet index.
tBased on Lipid Research Clinics Program Prevalence Study

data, visit 2 random sample, men 50-54 years old.53

analysis appear to explain the observed familial clus-
tering extremely well.

Lipid Levels
Mean lipid values of the 301 study subjects

adjusted to values for 50-year-old men are given in
Table 2 and are compared with results for men of a
similar age from the Lipid Research Clinics Program
Prevalence Study random sample.53 Total cholesterol
and triglyceride mean values were 30 and 50 mg/dl
less, respectively, in the study subjects than in the
Lipid Research Clinics populations. Differences were
also seen for VLDL cholesterol and LDL cholesterol.
However, the mean values for HDL cholesterol are
similar in the two samples.

Lipid, Apolipoprotein, and Lipoprotein Associations
In the present study, ALP phenotypes were found

to be closely associated with variation in other lipid,
apolipoprotein, and lipoprotein mass measurements.
As shown in Table 3, mean values of both total
cholesterol and triglyceride were significantly higher
among subjects with phenotype B (p<0.001). These
mean values are within normal ranges, however,
because these data are based on a sample of primar-
ily healthy families. The difference in total choles-
terol is due to relative increases of LDL cholesterol
and VLDL cholesterol among phenotype B subjects,
although the difference in mean values for LDL
cholesterol was only 10 mg/dl. HDL cholesterol was

significantly lower among subjects with phenotype B
(p<0.001). Differences were also seen for plasma
apolipoprotein levels; apo B levels were significantly
higher among subjects with phenotype B (p<0.001),
and apo A-I levels were lower (p<0.05).
Based on analytic ultracentrifugal analyses in a sub-

sample of all subjects, VLDL mass was significantly
higher among subjects with phenotype B (p<0.001),
consistent with results for triglyceride and estimated
VLDL cholesterol. The differences in large and small
LDL reflect primarily the definitions of ALP pheno-
types based on LDL subspecies. Mean IDL mass was
also higher among phenotype B subjects. HDL2 mass
was significantly lower among subjects with phenotype
B, but no difference was seen in HDL3 mass.

Triglyceride and HDL Cholesterol Distributions
Both triglyceride and HDL cholesterol have been

related to risk of CHD in numerous studies.4-6,9,10,54

TABLE 3. Adjusted Plasma Lipid, Apolipoprotein, and Lipoprotein Mass Levels by Atherogenic Lipoprotein Phenotype

ALP phenotype A ALP phenotype B

n Mean+SD n Mean+SD
Total cholesterol* 208 177±37 93 197+40
Triglyceridet* 208 69+26 93 141±+79
VLDL cholesterol+* 208 14±5 93 28±+16
LDL cholesterol* 208 116±35 92 126±36
HDL cholesterol* 208 46±15 92 37+ 14
Apo A-It 206 131±29 92 122±31
Apo B* 206 76±34 93 98±36
VLDL masst* 151 18±31 60 111±68
LDL mass

Large* 151 119+38 60 87±34
Small* 151 164±55 60 221 ±64

IDL mass* 151 20±14 60 38±17
HDL2mass* 151 55±44 60 13±26
HDL3 mass 151 189±47 60 180±59

ALP, atherogenic lipoprotein phenotype; VLDL, very low density lipoprotein; LDL, low density lipoprotein; HDL,
high density lipoprotein; IDL, intermediate density lipoprotein.

Values are given as mean±SD mg/dl.
Mean values are adjusted to 50-year-old men with analysis of covariance and adjusting for age, gender, and relative

weight.
*p<0.001, tp<0.05, for difference in means between phenotype A and phenotype B subjects based on analysis of

covariance.
tLoglo transformation used in calculations; reported values based on antilogs.
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Because of their close association with ALP pheno-
types as well, the distributions of these variables,
adjusted for age, gender, and relative weight, were
examined further.
The percent frequency distribution of triglyceride

levels is shown in Figure 2A. The overall distribution
has a long tail to the right, with skewness estimated to
be 2.35. This has been observed in many other
investigations, and log transformations are often
used in statistical analyses.9,54,55 The distribution of
triglyceride by ALP phenotype is also shown. As
expected from the mean values given in Table 3, the
triglyceride distribution for phenotype B subjects is
shifted upward in comparison to that for phenotype
A subjects. Of particular interest is that the pheno-
type B subjects appear to be responsible for the
skewing of the overall distribution; that is, skewing of
the triglyceride distribution is markedly reduced
when considered by phenotype; the skewness value
was 0.65 for phenotype A subjects, and 1.49 for
phenotype B subjects.

In Figure 2B, the cumulative triglyceride distribu-
tions for all subjects and for phenotype A and B
subjects are shown. The differences in the distribu-
tions for phenotypes A and B are clearly demon-
strated. The 50th percentile values differ by more
than 60 mg/dl (71 versus 133 mg/dl, respectively),
and the 90th percentile values are even more diver-
gent (104 versus 278 mg/dl, respectively).

In Figure 2C, the cumulative distribution for phe-
notype A subjects is reversed to compare the degree
of overlap of the distributions for the two pheno-
types. The distributions for subjects with phenotypes
A and B cross at a triglyceride level of approximately
95 mg/dl. Of subjects with phenotype A, only 17%
have triglyceride values of more than 95 mg/dl,
whereas 17% of subjects with phenotype B have
triglyceride values of less than 95 mg/dl. Because
there is very little overlap in these distributions,
triglyceride levels of more than and less than 95
mg/dl discriminate ALP phenotype in approximately
83% of the study subjects.
A similar analysis for HDL cholesterol is shown in

Figure 3. In Figure 3A, the percent frequency distri-
bution of HDL cholesterol values is shown. In con-
trast to the triglyceride distribution, little skewness is
seen in the overall distribution. As was seen in Table
2, the mean value of this overall distribution is very
similar to the Lipid Research Clinics results (43
versus 44 mg/dl, respectively). However, the distribu-
tion for phenotype B subjects is shifted downward in
comparison to that for phenotype A subjects. This
difference is seen even more clearly in the cumulative
distributions shown in Figure 3B. For pattern A
subjects, the 50th and 10th percentiles were approx-
imately 44 and 34 mg/dl, respectively. The compara-
ble values for phenotype B subjects were consider-
ably lower at 36 and 27 mg/dl, respectively. In Figure
3C, the cumulative distribution for phenotype B
subjects is reversed. The distribution curves cross at

subjects having HDL cholesterol values of less than
39 mg/dl and an equal percent of phenotype B
subjects having values of more than 39 mg/dl. The
HDL cholesterol distributions overlap more than the
triglyceride distributions, but the 39 mg/dl threshold
discriminates phenotype A and phenotype B subjects
relatively well.
A similar cumulative distribution analysis for apo

A-I and apo B is shown in Figures 4A and 4B. The
apo B distributions cross at 81 mg/dl and 37% of
phenotype B subjects have values below this level,
whereas an equal percent of phenotype A subjects
have values above this level. The apo A-I distribution
curves cross at 124 mg/dl, with a similar percent
overlap. Thus, apo A-I and apo B levels also discrim-
inate subjects with the two phenotypes but not as well
as triglyceride and HDL cholesterol.

Correlations
The interrelations of selected lipid, lipoprotein,

and apolipoprotein variables associated with ALP
phenotypes, based on correlation coefficients, are
shown in Table 4. As expected from the structure of
lipoprotein particles, triglyceride, LDL cholesterol,
apo B, VLDL mass, and IDL were highly intercorre-
lated, as were HDL cholesterol, HDL2 mass, and apo
A-I. In addition, triglyceride-related variables were
generally inversely correlated with HDL-related vari-
ables. For example, the correlation for plasma tri-
glyceride and HDL cholesterol and for VLDL mass
and HDL2 mass was -0.24 (p<0.001) and -0.47
(p<0.001), respectively.

Multivariate Analysis
Because of these interrelations, the simultaneous

associations of lipids and apolipoproteins with ALP
phenotypes were investigated by performing logistic
regression analysis. That is, the associations of lipid
and apolipoprotein variables with ALP phenotypes
were investigated by using phenotype as the depen-
dent variable and including various combinations of
lipid and apolipoprotein measures as independent
variables. The results in Table 5 summarize three
models that include age, gender, and Quetelet index
as covariates and show x2 goodness-of-fit statistics for
each model.

In model 1, both HDL cholesterol and plasma
triglyceride were strongly and independently associ-
ated with ALP phenotypes. In addition to these
variables, LDL cholesterol, apo A-I, and apo B were
also considered independent variables; however, they
did not make a significant contribution to the fit of
the model and are not reported in the table. Model 2
shows that apo A-I and apo B, without other lipid
variables, were both significantly associated with
ALP phenotypes. The model x2 values show that
model 1 provides a better fit to the data than model
2, however. In model 3, VLDL mass and HDL2 mass

were considered and found to be independently
associated with ALP phenotypes in the subset of 211

approximately 39 mg/dl, with 28% of phenotype A study subjects with analytic ultracentrifuge data.
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Frequency Distribution of Adjusted
Triglyceride Levels
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of Adjusted Triglyceride

Levels
FIGURE 2. Plots ofpercent frequency distribution of
adjusted triglyceride values for all study subjects andfor
atherogenic lipoprotein (ALP) phenotypeA andpheno-
type B subjects (A), cumulative distributions ofadjusted
tiglyceride values for all study subjects and for pheno-
type A and phenotype B subjects (B), and cumulative
triglyceride distributions by ALP phenotype (C). Distri-
bution for phenotype A subjects is reversed to compare
overlap of two distributions. Triglyceride values are
adjusted to mean level for 50-year-old men based on
analysis of covariance.
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Frequency Distribution of
Adjusted HDL Cholesterol Levels

HDL Cholesterol (mg/dI)

Cumulative Distribution of
Adjusted HDL Cholesterol Values

FIGURE 3. Plots of percent frequency of adjusted high
density lipoprotein (HDL) cholesterol values for all subjects
andfor subjects with atherogenic lipoprotein (ALP) phenotype
A and phenotype B (A), cumulative distributions of adjusted
HDL cholesterol values for all study subjects and for pheno-
type A and phenotype B subjects (B), and cumulative distri-
butions ofHDL cholesterol by ALP phenotype (C). Distribu-
tion for phenotype B is reversed to compare overlap of
distributions. HDL cholesterol values are adjusted to mean

level for 50-year-old men by analysis of covariance.
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a) Cumulative Distribution of Adjusted
Apolipoprotein A-1
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b) Cumulative Distribution of Adjusted
Apolipoprotein B

100
80 L

a70 - /

50

40 7

20 A\ PpeB
10 _ i

40 50 60 70 8Q 90 100 110 120 130 140 150 160 170
Plsma Apo B Level (mg/d)l

FIGURE 4. Cumulative distributions of apo A-I levels by
ALP phenotype (a). Distribution for phenotype B subjects is
reversed. Plots of cumulative distributions of adjusted apo B
values by atherogenic lipoprotein (ALP) phenotype (b). Dis-
tribution forphenotype A subjects is reversed. All apolipopro-
tein values are adjusted for 50-year-old men by analysis of
covariance.

When IDL mass was added to this model, it did not
significantly increase the fit of the model to the data.
Taken together, these results demonstrate that a

predominance of small, dense LDL particles is
strongly associated with an apparently high-risk lipo-
protein profile characterized by relative increases in
plasma triglyceride, VLDL, and apo B levels and by
decreases in HDL cholesterol, HDL2 mass, and apo
A-I levels.

Discussion
We have previously demonstrated that the phe-

notype characterized by a predominance of small,
dense LDL particles (ALP phenotype B) segregates
in families consistent with the presence of a single
major genetic locus.27 Based on estimates from the
complex segregation analysis, approximately 44% of
study subjects would be expected to carry at least
one copy of the proposed phenotype B allele. In the
same sample of primarily healthy families, we also
demonstrate that phenotype B is associated with
increased levels of plasma triglyceride, VLDL, IDL,
and apo B and with decreased levels of HDL
cholesterol, HDL2 mass, and apo A-I. These results
are consistent based on comparisons of mean val-
ues, cumulative distributions, and multivariate
analysis. Thus, ALP phenotype B may be a common
genetic marker for increased susceptibility to CHD.
Although the genetic results reported above are

based on a community-based sample of families, we
have recently identified a similar mode of inheritance
for phenotype B in members of families with familial
combined hyperlipidemia.56 A similar allele fre-
quency was found, and penetrance estimates by age
and gender showed comparable trends. However,
both studies used complex segregation analysis, a
technique that has many advantages as well as limi-
tations. It allows comparisons of a variety of genetic
and environmental models, including multifactorial
inheritance (polygenic or cultural), single major gene
models, and horizontal (environmental) transmission
only, using likelihood statistics.45 However, this is a
statistical modeling technique, and the use of this
"mixed model" can give spurious results if ascertain-
ment bias is present. Thus, although the two family
studies conducted so far provide strong evidence for
the presence of a major gene, this can be proven only
by using linkage studies to identify the chromosomal
location.

In a recent case-control study, we demonstrated
that phenotype B was associated with both increased
risk of myocardial infarction (odds ratio, 3.0) and a
high-risk lipoprotein profile.24 Specifically, subjects in
that study with phenotype B had significantly
increased levels of triglyceride, VLDL mass, IDL

TABLE 4. Correlations of Lipid, Apolipoprotein, and Lipoprotein Mass Levels

LDL cholesterol HDL cholesterol Apo B Apo A-I VLDL mass* IDL mass* HDL2 mass*
Triglyceride 0.31t -0.24t 0.54t -0.004 0.93t 0.61t -0.43t
LDL cholesterol -0.06 0.87t 0.10 0.29t 0.67t -0.24t
HDL cholesterol -0.09 0.73t -0.38t -0.25t 0.81t
Apo B 0.11 0.52t 0.74t -0.34t
Apo A-I 0.09 0.07 0.60t
VLDL mass 0.63t -0.47t
IDL mass -0.35t

LDL, low density lipoprotein; HDL, high density lipoprotein; Apo, apolipoprotein; VLDL, very low density
lipoprotein; IDL, intermediate density lipoprotein.

*Sample size was 211 study subjects for correlations including these variables.
tp<0.001.
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TABLE 5. Logistic Regression Equations Associating Atherogenic Lipoprotein Phenotypes With Lipid, Lipoprotein,
and Apolipoproteins

Regression coefficients

Model 1 (n=300) Model 2 (n=298) Model 3 (n=211)

Age (yr) 0.018 0.016 0.028*
Gender (0, female; 1, male) 0.133 0.459 0.212

Quetelet index (wt [kg])/(ht [m])2 -0.118* 0.030 -0.127*
Triglyceride (mg/dl) 0.049t .. t ...

HDL cholesterol (mg/dl) -0.070§ ... ...

VLDL mass (mg/dl) ... ... 0.041t

HDLZ mass (mg/dl) ... ... -0.036§
Apo B (mg/dl) ... 0.032t
Apo A-I (mg/dl) ... -0.014*
Model x2 141.54 60.06 112.28

df 5 5 5

p <0.001 <0.001 <0.001

*p<0.05, tp<0.001, §p<0.01.
*This variable was not included in the model.

mass, and apo B and decreased levels of HDL choles-
terol, HDL2 mass, and apo A-I (Reference 24 and
personal observations), each of which has been asso-

ciated with increased risk of CHD.4-11 57-59 The vari-
ations in lipid and apolipoprotein levels seen in the
present study of primarily healthy relatives confirm
these associations, although mean levels are within
normal ranges. In addition, mean total cholesterol and
LDL cholesterol levels are slightly, but significantly,
higher among phenotype B subjects in this study.
Another recent study has shown similar associa-

tions among healthy blood donors.60 Although the
underlying mechanism for phenotype B has not been
identified, it is tempting to speculate that this con-
stellation of lipid and apolipoprotein variations is the
result of pleiotropic effects of a single gene. That is,
the proposed ALP gene may simultaneously influ-
ence both LDL particle size and these other lipopro-
tein-related variables through a common metabolic
mechanism. In addition, a borderline association
between increased Quetelet index and phenotype B
was observed (p= 0.054) after adjustment for age and
gender.
The particularly strong association between ALP

phenotype B and plasma triglyceride level reported
in the present study could indicate that phenotype B
is a marker for a defect having a primary action on

triglyceride metabolism. As shown in Figure 2C,
there is very little overlap in the cumulative triglyc-
eride distributions of phenotype A and phenotype B
subjects. In addition, the skewing of the triglyceride
distribution appears to be largely explained by ALP
phenotype B (Figure 2A). However, the triglyceride
cutoff point that best distinguishes the two pheno-
types (95 mg/dl) may be low because of the healthy
study sample (Table 2). Many studies have demon-
strated relations between LDL particle size and
triglyceride metabolism.61-64 In particular, a recent
kinetic study of relatives of probands with primary
hypertriglyceridemia provided evidence for genetic

control of triglyceride removal.62 Changes in both the
core and surface of LDL particles have been shown
to occur when plasma triglyceride levels are in-
creased, possibly due to exchange of core lipids
between lipoproteins.64'65 Studies of postprandrial
lipemia in normal individuals have also suggested
that HDL cholesterol is influenced by triglyceride
metabolism through the action of lipolytic enzymes.66
The association of phenotype B with variations in

lipid and apolipoprotein levels among these family
members also suggests that phenotype B may be
involved in other reported familial lipid disorders. A
predominance of small, dense LDL has been shown
to be common in families with familial combined
hyperlipidemia.67 This disorder is characterized by
elevations of plasma total cholesterol and/or triglyc-
eride levels in family members, and affected relatives
have variable lipid phenotypes and increased risk of
myocardial infarction.68,69 As mentioned above, we
have recently demonstrated that ALP phenotype B
appears to be inherited as a single-gene trait in a
sample of families with this disorder, and phenotype
B was closely associated with the hypertriglyceri-
demia found in family members.56 In addition, both
ALP phenotype B and familial combined hyperlipi-
demia are characterized by relative increases in
plasma apo B levels. Two recent studies, also using
complex segregation analysis, have provided data to
indicate that apo B levels are controlled by a single,
major locus.70,71 Finally, a condition termed hyper-
apobetalipoproteinemia, in which a subset of coro-
nary artery disease patients were found to have
elevated apo B levels but normal LDL cholesterol
levels,72 could also involve or interact with ALP
phenotype B. To date, the interrelations of these
proposed genes and lipid disorders have not been
investigated.

It should be noted, however, that the study of
genetic control of ALP phenotypes is complicated by
many factors. Phenotype B, as determined by gradi-
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ent gel electrophoresis analysis, is often not ex-
pressed in young males and premenopausal women.
This finding suggests that hormonal factors might be
involved in the apparent full penetrance of pheno-
type B in adult men and postmenopausal women.
Severe elevations of triglyceride due to mechanisms
other than the genetic model proposed here may give
rise to phenocopies. Behavioral and environmental
influences such as diet, exercise, and use of lipid-
altering medications may also affect the expression of
the trait.73 Other genes could potentially influence
the expression of ALP phenotypes through epistatic
effects, and segregation analysis cannot rule out the
possibility of genetic heterogeneity of the ALP phe-
notypes. For example, a syndrome named "familial
dyslipidemic hypertension" has recently been
described and could involve the proposed ALP
locus.74

If genetic control of lipoprotein and apolipopro-
tein levels by the proposed ALP locus is confirmed,
there are important clinical implications for reduc-
tion of risk of CHD. For example, intervention
strategies might be designed specifically for individ-
uals who carry an ALP B allele. These strategies may
need to differ from general recommendations to be
effective in reducing risk in these individuals.
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